
Seoul Bike Demand Analysis

William K Davis III Max Kutschinski Pei-Yin Yang

2022-08-03

Abstract
City-wide bike sharing programs have gained in popularity among major cities in recent years, providing

an attractive alternative to cars and other forms of transportation. A key factor in the program’s success
is the efficient allocation of rental bikes across the city. This study aims to predict bike demand based on
time differences by making hourly forecasts over a 24-hour horizon, enabling policymakers to get a better
picture of the next day’s bike demand. We developed time series models, as well deep learning and tree-
based models, and compared them using time series cross-validation with MAE as the evaluation criterion.
The best performing model is based on the LSTM architecture, which yielded a test prediction Mean
Absolute Error less than half that of the naïve baseline forecast. This study addresses the time-dependent
aspect of bike demand, but further studies are needed to investigate spatial variations.

Introduction
While the concept of renting transportation has been around for decades in the form of rental car companies,
such as those often found at airports, it has also been adapted to the modern “sharing economy” in the form
of bikeshare programs. These programs, often offered by local governments, allow users to rent bicycles for
individual (point-to-point) trips, such as commuting to and from work. Cycling can be a faster mode of
transportation than walking and might even be faster than driving or taking a taxi in the most congested
of cities. Finally, bicycles offer a lower-pollution alternative to driving, which can be appealing to cities
struggling to contain emissions.

A key challenge faced by administrators of bikesharing programs is the efficient allocation of available bicycles.
Bikes must be available in the places that people need them and at the time they are needed in order for the
program to be effective. In order to efficiently allocate bikes, Schuijbroek et al. (2017) suggest administrators
can periodically transport bikes from areas of low demand to areas of high demand. Demand in a bikeshare
system is a function of both time and location. In this paper we focus on the time component of the demand
for bicycles at each hour of the day, ignoring the spatial component of demand. We will use the Seoul Bike
Sharing Demand data from UCI (2020). Our focus will be limited to predicting demand at each hour of the
day, ignoring inferential aspects of the analysis. While much of the recent research using this dataset has
focused on machine learning methodologies, we will take a multifaceted approach that incorporates advances
in time series modeling in addition to the popular machine learning methodologies.

This paper begins with a review of the relevant literature, including studies of the Seoul data specifically.
Next, we present the results of the exploratory data analysis, including a description of the dataset and
relevant profiles of the features. The fourth section describes the modeling techniques to be applied to the
data. The fifth section describes the evaluation techniques to be used for measuring model performance and
selecting the best model. The penultimate section presents the results of the analysis and a discussion in the
context of the problem to be solved. Finally, the conclusion provides suggestions for action and application of
the results, while also highlighting potential areas of future research.

1

Literature
The popularity and accessibility of the Seoul bike dataset has resulted in its use for numerous studies. A
majority of these studies have focused on the use of various machine learning algorithms. E and Cho (2020)
found that a CUBIST model, which combines tree- and regression-based methods into a series of rules,
performed best on the Seoul data when measured by R2 and RMSE on the testing dataset. Gao and Chen
(2022) found that another tree-based method, random forest (RF), performed best on a similar bikeshare
dataset when measured by R2 and RMSE. Both studies further showed that weather-related variables, such
as temperatures and precipitation, where among the most important for predicting demand. Gao and Chen’s
results highlight the importance of selecting a relevant evaluation metric and explanatory variables. When
socioeconomic variables were included in the model, the RF outperformed the support vector machine (SVM)
when measured by both RMSE and MAE. However, when the socioeconomic variables were excluded from
the model, the RF outperformed the SVM when measured by RMSE, but the SVM performed better when
measured by MAE This indicates that without the socioeconomic variables included, the SVM was prone to
a few errors that were quite large in magnitude, while the RF was more prone to smaller but more frequent
errors. This reinforces the importance of using multiple metrics when evaluating predictions.

Considerably fewer researchers have made use of traditional time series methodologies when predicting
demand of a similar nature to the bikeshare data. Both E and Cho (2020) and Gao and Chen (2022) make
use of temporal variables such as hour, day of the week, and holidays. In each case they were found to be of
moderate or high importance. Gao and Chen (2022) applied linear regression using temporal variables such
as a weekend indicator as a predictor, but this model greatly underperformed the machine learning methods.
Further, there is no discussion of any attention paid to stationarity and autoregression, which are common in
time series data but may also result in violations of the standard assumptions of linear regression.

Our analysis looks to build on this work by using newer machine learning methods such as long short-term
memory and recurrent neural networks, as well as modern time series techniques that leverage the underlying
structure of the data.

Exploratory Analysis

Table 1: Variable definitions

Variable name Type Definition
Hour Hour datetime year-month-day hour:minute:second
Rented Bike count BikeCount numeric Count of bikes rented at each hour
Temperature Temperature numeric Temperature in Celsius
Humidity Humidity numeric % humidity
Windspeed WindSpeed numeric meters/second
Visibility Visibility numeric in 10m
Dew point temperature Dewpoint numeric Celsius
Solar radiation SolarRadtion numeric MJ/m2
Rainfall Rainfall numeric mm
Snowfall Snowfall numeric cm
Seasons Seasons categorical Winter, Spring, Summer, Autumn
Holiday Holiday categorical Holiday/No holiday
Functional Day FunctionalDay categorical NoFunc(Non Functional Hours), Fun(Functional hours)
Workday Workday categorical A workday is a weekday that is not a holiday.

The dataset consists of 8,760 hourly observations of 12 variables from 2017-12-01 00:00:00 to 2018-11-30
23:00:00. There are 295 observations where BikeCount=0 due to the bikeshare system not functioning. There

2

are no other periods where BikeCount=0. Table 1 contains information on the variables in the dataset,
including the

Bike Count

0

1000

2000

3000

Jan 2018 Apr 2018 Jul 2018 Oct 2018
Hour

B
ik

eC
ou

nt

Hourly Bike Demand

0.00

0.25

0.50

0.75

12 24 36 48 60 72 84 96 108120132144156168
lag [1h]

ac
f

0

250

500

750

0 1000 2000 3000
BikeCount

co
un

t
Figure 1: Hourly bike demand

The data shows increasing demand and variability during the summer months. The bike demand data are
counts, meaning they are technically discrete. Based on the histogram and the count nature of the data, it
appears that a poisson distribution would be most appropriate for the data. If we were to model the bike
demand on a continuous scale, a log-normal distribution might be appropriate.

Figure 1 highlights the incredible variation in demand over time. The variance in demand appears to increase
during the summer months and then decrease again in the autumn. This heteroskedasticity violates the
constant variance assumption of ordinary least squares regression and will have to be corrected if regression-
based methods are to be used. We can also see that the mean of the series appears to increase during the
summer months before decreasing again in the autumn.

Kwiatkowski et al. (1992)’s test yields p = 0.01, meaning there is strong evidence in favor of the presence
of a unit root and the data is likely non-stationary. Ljung and Box (1978)’s test was conducted up to 24
lags which resulted in a test statistics of 39743 with p = 0, indicating strong evidence that there is serial
correlation in the hourly bike count. The acf plot in Figure 1 shows that autocorrelation is significant at most
lags out to 168 hours, which represents the same hour of the same day in the previous week. The strong
serial correlation makes this dataset a good candidate for time series techniques.

3

0

1000

2000

3000

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of DayH
ou

rly
 B

ik
e

D
em

an
d

Hourly Bike Count by Hour

0

1000

2000

3000

Sun Mon Tue Wed Thu Fri Sat
Day of WeekH

ou
rly

 B
ik

e
D

em
an

d

Hourly Bike Count by Day of Week

0

1000

2000

3000

Workday Not Workday
Workday IndicatorH

ou
rly

 B
ik

e
D

em
an

d

Hourly Bike Count by Working Day

0

1000

2000

3000

Winter Spring Summer Autumn
SeasonH

ou
rly

 B
ik

e
D

em
an

d

Hourly Bike Count by Season

Figure 2: Hourly bike demand by time period

Figure 2 highlights various seasonal and temporal patterns in the data. There is certainly an effect based on
the hour of day, with demand increasing sharply in the morning, presumably during the morning commute,
before decreasing into the lunchtime hour. From there, demand rises steadily through the evening commute
before peaking around dinner time and then falling through the nighttime hours. Variability also appears
greater during the evening hours, which is consistent with the idea heteroscedasticity; the variance increases
with the level of the series. Demand appears slightly higher during workdays (where workdays are weekdays
that are not holidays) and weekdays, though the difference does not appear particularly large. There are a
number of large positive outliers during the weekdays. Finally, demand appears largest during the summer
months and smallest during the winter, as biking would be a less desirable option in the cold.

0
200
400
600

Jan 15 Jan 22 Jan 29 Feb 05

Hour (1/11/2018 to 2/8/2018)

B
ik

eC
ou

nt

Day Type Not Workday Workday

Hourly Demand by Day Type

0

1000

2000

Apr 09 Apr 16 Apr 23 Apr 30

Hour (4/4/2018 to 5/2/2018)

B
ik

eC
ou

nt

0

1000

2000

3000

Jul 02 Jul 09 Jul 16 Jul 23

Hour (6/27/2018 to 7/25/2018)

B
ik

eC
ou

nt

0

1000

2000

3000

Aug 13 Aug 20 Aug 27 Sep 03

Hour (8/7/2018 to 9/4/2018)

B
ik

eC
ou

nt

Figure 3: Hourly bike demand by type of day, highlighting differing seasonality between workdays and
non-workdays

Figure 3 provides insight into the seasonality of the bike demand. Each panel is a 4-week sample of hourly
bike demand, with non-workdays (weekends and holidays) highlighted in red. While these days appear to
follow a consistent hourly pattern much like the workdays, we can see that their is a difference between the
seasonality of workdays and the seasonality of non-workdays. Most notably, the troughs in demand appear

4

consistent between the types of days while the peaks are consistently higher for workdays as compared to
non-workdays. This changing seasonality based on type of day will need to be captured in our model.

Continuing with the impact of seasonality and temperature on demand, we will next explore covariates
included with the dataset.

Covariates
This dataset includes a number of covariates to aid in modeling bike demand. All of these covariates are
listed in Table 1, along with their definitions. The covariates fall into one of two broad categories: weather
and social. Weather covariates include variables such as temperature, humidity, precipitation, and others.
Social variables capture the impact of calendar-based human behavior, such as holidays and weekends.

D
ew

point
H

um
idity

R
ainfall

S
now

fall
S

olarR
adiation

Tem
perature

V
isibility

W
indS

peed

Jan 2018 Apr 2018 Jul 2018 Oct 2018

−30
−20
−10

0
10
20
30

0
25
50
75

100

0

10

20

30

0.0

2.5

5.0

7.5

0

1

2

3

−20

0

20

40

0
500

1000
1500
2000

0

2

4

6

Hourly time plot of covariates

Figure 4: Hourly time plots of covariates

Time plots of the covariates (Figure 4) show a dynamic set of variables. Most of the covariates appear
to be typical time series data with varying degrees of trend, seasonality, cyclicality, autocorrelation, and
heteroskedasticity. Dewpoint and Solar Radiation follow a predictable pattern that mirrors temperature
throughout the year, with an upward trend peaking in the summer months and downward trend that hits a
trough in the winter months. Humidity, visibility, and Wind Speed appear to have less of a trend throughout
the year. Precipitation (rainfall and snowfall) appears to have a much more random pattern throughout the
year, with a large number of periods having no precipitation. Depending on the predictive performance of
the raw continuous precipitation features, it may prove more performant to convert them to binary variables
that simply indicate if precipitation occurred during that period.

5

ρ = 0.4

ρ = -0.152

ρ = 0.212

ρ = -0.202

ρ = 0.274

ρ = 0.125

ρ = -0.129

ρ = 0.563

Visibility WindSpeed

Snowfall SolarRadiation Temperature

Dewpoint Humidity Rainfall

0 500 1000 1500 2000 0 2 4 6

0.0 2.5 5.0 7.5 0 1 2 3 -20 0 20 40

-30 -20 -10 0 10 20 30 0 25 50 75 100 0 10 20 30

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

Covariate Value

B
ik

e
C

o
u

n
t

Figure 5: Scatterplots and smoothed GAM fits of Bike Count vs. each covariate

Figure 5 highlights a number of important relationships in the data. Bike count appears moderately linearly
correlated with both temperature (ρ = 0.563) and dewpoint (ρ = 0.400), though a higher-order interaction
might better represent this relationship. However, there is significant multicollinearity between temperature
and dewpoint (ρ = 0.913), so additional analysis will be required to isolate the effect of each variable. Finally,
we can see that a number of the covariates, such as wind speed, visibility, solar radiation, rainfall, and
snowfall all appear to follow non-normal distributions. As such, their relationship to bike count might be
best represented with a higher-order polynomial or other non-linear relationship.

Modeling
The modeling methods we have chosen for predicting bike demand fall into roughly two categories: parametric
time series modeling and non-parametric machine learning. The parametric time series models include
traditional time series methods like ARIMA and modern methods including the regression-based Prophet
and dynamic linear model FASSTER. The non-parametric machine learning methods include random forests,
boosted trees, and Long Short-Term Memory neural networks.

The stated goal of this analysis is to predict bike demand, not to conduct statistical inference (on the factors
that impact bike demand). Therefore, the non-parametric methods can be used freely despite their typical lack
of inferential ability. Further, we do not have to constrain ourselves to the typical assumptions of parametric
methods that are required for inference, namely independent observations and normally distributed residuals
with mean zero and constant variance. The assumption of independent observations is obviously violated
in time series data and most often appears in the form of autocorrelated errors. Therefore, the ability to
disregard the assumptions required for inference in favor of a focus on prediction will greatly expand the
number of viable methods for modeling the data.

6

Time Series Modeling
Figure 1 highlights the heteroskedasticity in the bike demand. This can be corrected using a Box and
Cox (1964)’s transformation. If we let xt represent the value of raw Bike Count data and yt represent the
transformed data, we have

yt = xλ
t − 1
λ

(1)

where λ = 0.1478452 was selected using Guerrero (1993)’s method.

SARIMAX

Traditional linear regression models can be adapted to handle the autocovariance structure of time series
by assuming that the errors follow a seasonal ARIMA (SARIMA) process instead of the traditional ϵ ∼
iid N(0, σ2). This results in the modified regression equation

yt = β0 +
k∑

j=1
βjzjt + xt (2)

where:

• yt is the response variable at time t
• β0 is the traditional intercept
• z1t, . . . , zkt are the k exogenous regressors observed at time t.
• β1, . . . , βk are the regression coefficients.
• xt are the regression errors, which are assumed to follow an SARIMA process as in (3).

(2) is often referred to as SARIMAX for Seasonal ARIMA with eXogenous regressors.

ΦP (BS)ϕ(B)∇D
S ∇dxt = ΘQ(BS)θ(B)wt (3)

where:

• ΦP (BS) are the P seasonal autoregressive components
• ϕ(B) are the p autoregressive components
• ∇D

S are the D seasonal differences
• ∇d are the d differences
• ΘQ(BS) are the Q seasonal moving average components
• θ(B) are the q moving average components
• wt ∼ iid N(0, σ2

w) is the traditional Gaussian white noise

as degined by Shumway and Stoffer (2019). SARIMA models of this form are often written ARIMA(p, d, q) ×
(P, D, Q)S . A KPSS test indicates that the data is non-stationary and requires D = 1 seasonal difference.
Autocorrelation and partial autocorrelation plots can be used to determine the ARIMA order.

7

0.0

0.5

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

ACF of ∇Syt

0.0

0.5

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

PACF of ∇Syt

Figure 6: Correlograms for ∇Syt

Figure 6 indicates a seasonal autoregressive model with P = 6 and p ≥ 12. This is a large number of
seasonal autoregressive terms and will almost certainly result in characteristic roots inside the unit circle,
causing the model to be unstable. A quick search of the parameter space using the R function ARIMA
O’Hara-Wild et al. (2021)’s fable package to automatically select values for p, d, q, Q results in no stable
ARIMA(p, d, q) × (6, 1, Q)24 models being found.

When the data exhibit higher frequency or multiple types of seasonality (such as daily and weekly, in our
case), an alternative solution for modeling seasonality suggested by Hyndman and Athanasopoulos (2021)
can be to use fourier terms. Introducing the fourier terms will result in a model of the form

yt = β0 +
k∑

j=1
βjzjt + sd(t, m) + sw(t, n) + xt (4)

sd(t, m) =
m∑

i=1

[
αi sin

(
2πit

24

)
+ βi cos

(
2πit

24

)]
(5)

sw(t, n) =
n∑

l=1

[
γl sin

(
2πlt

168

)
+ δl cos

(
2πlt

168

)]
(6)

where:

• β0 +
∑k

j=1 βjzjt are the intercept, independent variables and their coefficients, as defined in (2)
• sd(t, m) are the m daily seasonality fourier terms
• sw(t, n) are the n weekly seasonality fourier terms
• xt are the model errors, which are assumed to follow a ARIMA(p, d, q) process (note that in contrast to

(2) this is a non-seasonal ARIMA model; the seasonality is omitted from the ARIMA process because it
is captured by the fourier terms).

The R function fable::ARIMA is used to fit this model, which, as (https://stats.stackexchange.com/users/159/rob
hyndman) notes, handles missing values automatically using a Kalman filter. As a result of the missing
values, the point (parameter) estimates will likey be biased. The use of covariates may capture some of the
pattern in the missing data, if there is any, which would help to reduce the bias. However, the final point
forecasts will likely still have some bias.

8

−4

0

4

Jan Apr Jul Oct
Hour

.r
es

id

ARIMAX(2,1,2) with daily & weekly fourier terms

−0.1

0.0

0.1

0.2

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

ac
f

−0.1

0.0

0.1

0.2

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

pa
cf

Figure 7: Residuals for an ARIMAX(2,1,2) model with daily and weekly fourier terms

The fourier model resulted in the selection of an ARIMA(2, 1, 2) process for the regression residuals. The
residual ACF and PACF plots from the fourier model (Figure 7) still show significant autocorrelation.
Autocorrelation in the residuals violates the Gauss-Markov assumptions, meaning the model should not be
used for inference. The goal of this analysis is to generate accurate (point) forecasts, which are still valid
even when the errors exhibit autocorrelation.

Next we will fit a linear regression with SARIMA errors to the data where all parameters p, d, q, P, D, Q
are chosen automatically using fable::ARIMA, which relies on the algorithm developed by Hyndman and
Khandakar (2008). This resulted in the selection of an SARIMA(1, 0, 1) × (5, 1, 0)24 for xt.

9

−4

0

4

Jan Apr Jul Oct
Hour

.r
es

id

SARIMAX(1,0,1) × (5,1,0)24

−0.2

−0.1

0.0

0.1

0.2

0.3

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

ac
f

−0.2

−0.1

0.0

0.1

0.2

0.3

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

pa
cf

Figure 8: Residuals for an SARIMAX(1, 0, 1) × (5, 1, 0)24

Figure 8 shows that, while the autocorrelation (and partial autocorrelation) for a SARIMA(1, 0, 1)×(5, 1, 0)24
model has been reduced over the ARIMAX(2, 1, 2) with fourier terms, there is still repeating statistically
significant autocorrelation.

Finally, we will test a SARIMAX model that makes use of two derived variables. First, as was seen in Figure
5, there appears to be a higher-order relationship between temperature and bike count. Therefore, we will
add a Temperature2 term to the model. Additionally, as can be seen in 4, Rainfall and Snowfall are both
continuous variables that have a large number of zero values. We believe it is a reasonable assumption
that the presence or absence of Rainfall or Snowfall will have the largest impact on the bike count, and
the quantity of rain or snow is only marginal in effect compared with the presence or absence rain or snow.
Further, we believe that any precipitation, regardless of type, will impact bike count, and the type (and
quantity) of precipitation is of much less importance. Therefore, we will create a derived indicator variable
Precipitation_Flag to identify the presence of any precipitation, defined as follows:

Precipitation Flag =
{

1, Rainfall > 0 or Snowfall > 0
0, otherwise

(7)

10

−4

0

4

Jan Apr Jul Oct
Hour

.r
es

id

SARIMAX(1,0,1) × (5,1,0)24 with Temperature2 and Precipitation_Flag

−0.2

0.0

0.2

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

ac
f

−0.2

0.0

0.2

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

pa
cf

Figure 9: Residuals for an SARIMAX(1, 0, 1) × (5, 1, 0)24 with Temperature2 and Precipitation Flag

The addition of Temperature2 and Precipitation Flag have reduced AIC from 14833 to 14789, AICc from
14833 to 14789, and BIC from 14965 to 14927, when compared with the model from Figure 8. Therefore
the addition of these two variables has helped improve the model fit. Unfortunately, as 9 shows there is still
statistically significant autocorrelation in the residuals It is possible that the seasonal patterns in the data
are too complex or too high frequency to be captured by an ARIMA, ARIMAX, or SARIMAX model. As a
result of the residual variance structure, prediction intervals cannot be generated with these models, though
point estimates are still valid.

In an effort to overcome the current residual structure we will explore more modern time series techniques.

Prophet

Taylor and Letham (2018)’s Prophet uses a generalized additive model (GAM) to capture the different
features of the time series. Our model will take the form

y(t) = g(t) + sd(t, m) + sw(t, n) +
k∑

j=1
βjzjt + ϵt (8)

where:

• g(t) is a piecewise constant function to represent the trend in the series
• sd(t, m) as in (5)
• sw(t, n) as in (6)
•

∑k
j=1 βjzjt is as in 2

• ϵt is the model error

One major benefit of (8) is that it is much faster to fit than a model with ARIMA terms. The downside is
that it does not explicitly capture (non-seasonal) AR(p) and MA(q) terms. As Taylor and Letham (2018)

11

note, because this is a curve-fitting exercise rather than a generative model, missing values do not need to be
manually imputed. Instead, the curves g(t), sd(t, m), and sw(t, n) are fit to the raw data and then used to
impute the missing values. Further, as with the ARIMA model, the presence of the covariates helps to control
for any missingness that might be related to one of the covariates. However, the missing value interpolation
will still result in biased parameter estimates for the model.

We will use prophet from O’Hara-Wild (2020a)’s package fable.prophet to train the model in R. The R
function sets a number of desirable default parameter values as recommended by Taylor and Letham (2018).
In order to properly tune the model to our dataset we will use TSCV (see Model Selection and Test Error)
to select m and n. The TSCV will consist of 63 folds/time-slices. We will search over the parameter space
m ∈ {1, 2, 5, 10, 20, 50} and n ∈ {3, 5, 10, 20, 50}, giving us 6 × 5 = 30 possible parameter combinations.

365

365

363

307

273

321

321

320

307

273

305

305

301

285

273

302

303

299

280

272

303

303

300

279

272

302

302

299

279

271

3

5

10

20

50

1 2 5 10 20 50
m: Number of 'day' fourier terms

n:
 N

um
be

r
of

 'w
ee

k'
 fo

ur
ie

r
te

rm
s

275

300

325

350

MAE

Prophet out−of−sample MAE

Figure 10: Cross-validated MAE for Prophet models with various numbers of (daily and weekly) fourier terms

Figure 10 identifies m = 50 and n = 50 as the optimal number of fourier terms (they minimize MAE). We fit
this model to the entire training dataset, including the two derived variables discussed in the SARIMAX
section, and analyze the residuals.

0.0

0.3

0.6

0.9

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

m=50 daily, n=50 weekly fourier terms

ACF of Prophet model

0.0

0.3

0.6

0.9

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

m=50 daily, n=50 weekly fourier terms

PACF of Prophet model

Figure 11: Residual correlograms for a Prophet model with m = 50 (daily) and n = 50 (weekly) fourier terms

As can be seen from the PACF of the residuals in Figure 11, there is still autocorrelation not captured by
the model. Therefore, the model point estimates will be valid but prediction intervals cannot be generated
due to the error structure. This is to be expected, as Taylor and Letham (2018) notes that the design of

12

Prophet as a curve-fitting exercise, rather than a generative model (such as ARIMA) that captures the
temporal dependence of the data, can be expected to give up some inferential capabilities (in exchange for
computational and other benefits). Given that our goal is forecasting/prediction rather than inference, this
should not pose a problem for the analysis.

fasster

One interesting feature of the residual PACFs from both the SARIMAX model (Figure 8) and the Prophet
model (Figure 11) is that the seasonal “spikes” are parabolic in shape. That is, the PACF starts high at
lag 24, then decreases until reaching a min around lag 72 or lag 96 before rising again to another peak at
lag 168 (which is the one week lag). This shape might be why the AR and fourier terms are not capturing
all of the autocorrelation in the data: the strength of the correlation appears to be a non-linear function
of time. One reason for this shape in the PACF plot could be the presence of switching seasonality. More
specifically, it’s possible that the seasonality effects (not just the series itself) is different on working days and
non-working days. A hand-wavy analysis would say that, given there are seven days in a week, any single
day is, on “average”, 7/2 = 3.5 days away from any other day. For weekdays specifically, they are 3.5 days
away from a weekend (again, on average). Therefore, the trough in the PACF curve occurring between 3
and 4 days might be due to that lag most frequently correlating weekdays with weekend days, resulting in
lower correlation than when weekdays are compared with other weekdays, which would occur most frequently
at lags < 3 and > 4. This is certainly not a technical explanation of the pattern, but it is plausible. The
previously employed techniques (SARIMAX and Prophet) don’t allow for changing seasonality.

O’Hara-Wild and Hyndman (2022)’s fasster methodology allows for the seasonal (and trend) component(s)
of the model to be switched based on the “state” of a given observation, which is defined via a discrete
variable passed to the model. In our case, this variable would be Workday, which identifies the observation
as a workday or non-workday (weekend or holiday). Different seasonality coefficients can then be fit based
on whether a bike count is observed on a workday or non-workday. Equations 9 and 10 from O’Hara-Wild
(2020b) describe the two functions that support this methodology. The terms Ft and G operate together to
allow for different hourly seasonality components for workdays and non-workdays. For example, the effect
(coefficient) of the 8:00AM hour can be different for a workday and a non-workday. This is an improvement
over the previous models, which simply include the Workday variable as a regression coefficient, reducing its
effect to a shift in the level of the series. Like some of the previous methods, fasster uses fourier terms to
capture seasonality. We will use 10 and 5 sin-cos for the daily and weekly seasonality, respectively, based on
the recommendation of Hyndman and Athanasopoulos (2021).

yt = Ftθt + vt, vt ∼ N(0, V) (9)
θt = Gθt−1 + wt, wt ∼ N(0, W) (10)

where:

• yt is the bike demand at time t
• θt are the underlying states at time t
• Ft are the coefficients at time t for (linearly) combining the states to produce the response at time t (yt)
• G is a matrix that defines the behavior of each state (season, trend, level, etc)
• vt and wt are normally distributed random noise with mean 0.

Finally, as with the other time-series methods, fasster uses Kalman filtering and smoothing to interpolate
missing values, which will result in biased parameter estimates.

13

0.00

0.25

0.50

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

ACF of FASSTER model

0.00

0.25

0.50

12 24 36 48 60 72 84 96 108 120 132 144 156 168

lag [1h]

PACF of FASSTER model

Figure 12: Residual correlograms from the fasster model.

As with all of the other time-series models, fasster is not able to capture the autogression in the series,
resulting in significantly autocorrelated errors. Therefore, point forecasts from the fasster model are valid, but
inference may not be conducted with the model due to the impact of the autocorrelation on the covariance
structure of the model.

Machine Learning
Tree Methods

Random Forests Random forests is an ensemble method for regression and classification tasks that is
built on decision trees. It extends on the idea of bootstrap aggregation, or bagging, which is used to reduce
the variance of a statistical learning method via averaging. In the context of regression trees, this is done by
constructing B unpruned trees from B bootstrap samples and averaging the predictions f̂ as displayed in Eq.
(11).

f̂bag(x) = 1
B

B∑
b=1

ˆf∗b(x) (11)

One notable drawback of bagging is that the individual trees can be very correlated depending on how strong
the predictors are. Random forests address this issue by randomly selecting a subset of the features at each
split and thus de-correlating the trees.

Random Forests (RF) is implemented using the ranger package for increased computational speed. Fernández-
Delgado et al. (2014) notes that RF is an algorithm that is known to provide good results in the default
settings. The arguably most influential hyperparameter is mtry, the number of randomly drawn features
that are available at each split. In the regression case, p/3 is the default setting. When executing ranger via
caret it automatically performs a grid search of mtry its entire parameter space. By default, the algorithm
evaluates 3 points in the parameter space (smallest and largest possible mtry, as well as their mean) with 25
bootstrap iterations as an evaluation strategy and chooses the value with the lowest MSE.

The hyperparameters of our model are evaluated using TSCV, yielding an optimal mtry value of 53. Probst
et al. (2019) suggests that such a high value is usually indicative of a high number of relevant predictors.

XGBoost XGBoost is an advanced implementation of Gradient Boosting, which is an ensemble method
for regression and classification tasks that combines multiple weak learners into a stronger learner. In the
context of decision trees, a weak learner is defined as a tree with a small number of terminal nodes. The
trees are grown sequentially and they are fit on the residuals of the current fit as opposed to the outcome Y.
This has the effect of capturing signal that is not yet accounted for by the current set of trees. In addition,
each weak learner is shrunken down by some shrinkage factor before it is used, making boosting a “slow”
learning approach.

14

The first step is to initialize the model F (x) with a constant value γ, which can be obtained by minimizing it
with respect to a loss function L, as displayed in the following optimization problem:

F0(x) = argmin
γ

n∑
i=1

L(yi, γ) (12)

After specifying the number of base learners M, the following steps are repeated for each base learner from
m=1 to m=M:

First, the pseudo-residuals rim are calculated for each ith training example.

rim = −
[

∂L(yi, F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

(13)

Then a base learner hm(x) is fit to the pseudo-residuals using the modified training set {(xi, rim)n
i=1}.

Lastly, the model is updated as follows:

Fm(x) = Fm−1(x) + γmhm(x) (14)

where γm = argminγ

∑n
i=1 L(yi, Fm−1(xi) + γhm(xi))

XGBoost is a more regularized form of Gradient Boosting which uses L1 and L2 regularization to improve
model generalization capabilities. It also allows for parallel processing, and has a built-in routine for handling
missing values via its sparsity-aware split finding algorithm.

There are a variety of booster parameters in XGBoost that can be optimized via TSCV. Rather than tuning
all parameters simultaneously, Banerjee found it often helps to make small changes incrementally. The general
idea is to start with a high learning rate and a small number of base learners, then tune other parameters,
and finally decrease the learning rate while proportionally increasing the number of trees. The other adjusted
parameters are the maximum depth of a tree max_depth, the minimum required loss reduction gamma, the
fraction of columns to be subsampled colsample_bytree, the minimum sum of weights of all observations
required in a child min_child_weight, and the fraction of observations to be randomly sampled per tree
subsample.

Long Short-Term Memory (LSTM) Recurrent Neural Network

LSTM is a variety of Recurrent Neural Network (RNN). According to Hochreiter and Schmidhuber (1997),
the benefit of the Long Short-Term Memory (LSTM) network over other recurrent networks comes from
“constant error back propagation”, an improved method of back-propagating the error.

Figure 13: The repeating module in an LSTM contains four interaction layers. Images borrowed from @colah’s
blog.

15

Figure 14: The repeating module in an LSTM contains four interaction layers. Images borrowed from @colah’s
blog.

The key to LSTMs is the cell state, the horizontal line running through the top of the graph. An LSTM
features three gates: input, forget & output. Gates are a way to let information through optionally. They
comprise a Sigmoid neural net layer and a pointwise multiplication operation.

Let Xt be the input and ht be the output at time t. At time t, the equation of gates, input and output of the
LSTM cell are as follows:

it = σ(Wi[xt] + Ri[ht−1] + bi) (15)
ft = σ(Wf [xt] + Rf [ht−1] + bf) (16)
ot = σ(Wo[xt] + Ro[ht−1] + bo) (17)
gt = tanh(Wx[xt] + Rx[ht−1] + bx) (18)
ht = ot × tanh(ct) (19)

where it, ft, ot denotes input gate, forget gate and output gate respectively. The gt and ht refer to input and
output of the LSTM cell respectively, and ht−1 refers to the output of the previous LSTM cell. Sigmoid (σ)
and tanh are the activation functions to map the non-linearity.

ct represents the Constant Error Carousel (CEC), the magic of the LSTM as it prevents vanishing gradients,
it defines the memory cell to store the past state. It is denoted as follows:

ct = ct−1 × forget gate + new input × input gate (20)

In the case of regular RNNs during backpropagation, the derivative of an activation function, such as a
logistic, will be less than one. Therefore over time, the repeated multiplication of that value against the
weights will lead to a vanishing gradient.

In the case of an LSTM, we only multiply cell state × forget gate, which acts as both the weights and the
activation function for the cell state. As long as forget gate = 1, the information from the previous cell state
passes through unchanged. This is why LSTM can deal with more intricate problems than the RNN, by
keeping a constant flow of error throughout the backpropagation from cell to cell.

Data processing Brownlee (2020) suggest it is a good idea for machine learning algorithms that fit a model
that uses a weighted sum of input variables, such as linear regression, logistic regression, and artificial neural
networks (deep learning) to normalize the data. Here, by using the scikit-learn object MinMaxScaler, the
normalization scales each input variable separately to the range [0, 1], which is the range for floating-point
values where we have the most precision. A value is normalized as follows:

y = x − min{x}
max{x} − min{x}

(21)

16

Model Training keras, a Python library developed by Chollet et al. (2015), is used for model building.
Each input data was a list of lagged hours of bike rental count and the output data for that particular input
was the bike demand for the next hour. One-hour, 12-hour, and 24-hour lagged timesteps are used for the
input data. The processed dataset was partitioned into train and test set where about 86% of the total data
was used for model training and the remaining 14% was used for testing.

The following hyperparameters must be tuned:

• nodes(neurons): units accepting a vector of real-valued inputs and producing a single real-valued
output.

• batch size: how many obs. are used at each step, converge faster with a larger value.
• epoch: an iteration over all training obs.
• dropout: regularization method to prevent over-fitting
• learning rate: define how quickly the network updates its parameters

A summary of the LSTM model setup is below.

• Prediction Target: Bike rental demand forecasting in the city of Seoul for the next 24 hours.
• Input Variables

– Observed daily bike rental count and weather condition data during 12/01/2017 - 11/30/2018O
– Lagged values of all variables for the previous 1 hour, 12 hours, and 24 hours

• Training Parameters
– Learning Rate: 0.001
– Number of nodes: 50
– Number of epochs: 60
– Batch size: 24
– Dropout: 0.2

Forecast performance is assessed using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
the learning curve. A good fit is identified by a training and validation loss that decreases to a point of
stability with a minimal gap between the two final loss values.

Lag 1 Hour Model Model Architecture:

1) LSTM with 64 neurons in the first visible layer
2) LSTM with 32 neurons in the second visible layer
3) Dropout 50%
4) 1 neuron in the output layer for predicting Bike Rental Demand.
5) The input shape will be 1 time step with 14 features.
6) Used the Mean Absolute Error (MAE) loss function and the efficient Adam version of stochastic gradient

descent.
7) The model will be fit for 100 training epochs with a batch size of 50.

17

0 25 50 75 100
Number of Epochs

0.06

0.08

M
AE

Lag 1 model loss
train
test

0 10 20
Hours

1000

2000

Bi
ke

 R
en

ta
l D

em
an

d

Lag 1 Model Forecast
actual
prediction

Figure 15: LSTM Lag 1 Model Loss and Forcasted Bike Rental Demand of one day

Although in Figure 15 we can see both errors converge fairly fast, the proposed network is not a good fit
since there is a gap between the training error and test error.

Lag 12 Hours Model Model Architecture:

1) LSTM with 64 neurons in the first visible layer
2) LSTM with 32 neurons in the second visible layer
3) Dropout 50%
4) 1 neuron in the output layer for predicting Bike Rental Demand.
5) The input shape will be 12 time step with 14 features.
6) Used the Mean Absolute Error (MAE) loss function and the efficient Adam version of stochastic gradient

descent.
7) The model will be fit for 100 training epochs with a batch size of 50.

0 25 50 75 100
Number of Epochs

0.025

0.050

0.075

0.100

M
AE

Lag 12 model loss
train
test

0 10 20
Hours

1000

2000

Bi
ke

 R
en

ta
l D

em
an

d

Lag 12 Model Forecast
actual
prediction

Figure 16: LSTM Lag 12 Model Loss and Forcasted Bike Rental Demand of one day

The Loss vs Epoch curve is shown in Figure 16 in which the progress of mode while training is represented.
Both training and testing loss decreases in a smooth fashion fairly quickly.

Lag 24 Hours Model Model Architecture:

1) LSTM with 64 neurons in the first visible layer

18

2) LSTM with 32 neurons in the second visible layer
3) Dropout 50%
4) 1 neuron in the output layer for predicting Bike Rental Demand.
5) The input shape will be 24 time step with 14 features.
6) Used the Mean Absolute Error (MAE) loss function and the efficient Adam version of stochastic gradient

descent.
7) The model will be fit for 100 training epochs with a batch size of 50.

0 20 40 60 80
Number of Epochs

0.025

0.050

0.075

0.100

M
AE

Lag 24 model loss
train
test

0 10 20
Hours

1000

2000

Bi
ke

 R
en

ta
l D

em
an

d

Lag 24 Model Forecast
actual
prediction

Figure 17: LSTM Lag 24 Model Loss and Forcasted Bike Rental Demand of one day

Evaluation
Error
Given our stated use for these models is forecasting (prediction), when discussing model evaluation we must
first define the notion of forecast (prediction) error rate. Hyndman and Koehler (2006) define a number of
different metrics to use for forecast error, each with their own benefits and drawbacks. We will use Mean
Absolute Error (MAE) to select the best model from among the list of candidate models. Unlike percent
errors, which have the general form 100 × ê

yt
, MAE is defined when yt = 0. Further, MAE is on the same scale

as the original dataset (number of bikes per hour), which gives it nice properties of interpretability. We will
also report Root Mean Squared Error (RMSE), as it is a common error metric. According to Hyndman and
Athanasopoulos (2021), using MAE will result in forecasts of the median while RMSE results in forecasts of
the mean. Because our data appear skewed, the median is a more appropriate measure of center. Therefore,
MAE is the best error metric for selecting the best forecasting model and estimating test error.

For the purposes of discussing model error rate, let yt be the observed bike count in period t, ŷt be the
forecast bike count in period t. Then,

êt = yt − ŷt (22)

Mean Absolute Error = 1
nm

n∑
i=1

m∑
j=1

|eij | (23)

Root Mean Squared Error =

√√√√ 1
nm

n∑
i=1

m∑
j=1

e2
ij (24)

Where m = 24 is the number of periods for which bike count is forecast (the horizon) and n = 50 is the
number of iterations (folds) in the time series cross-validation.

19

Model Selection
Models will be selected and evaluated in the context of their use for forecasting rather than statistical
inference. As such, we will use time series cross-validation (TSCV). Hyndman and Athanasopoulos (2021)
define TSCV as selecting a point or series of points from the dataset as test sets, then selecting all prior
points as the training set.

T T T T T F F F

T T T T T T T T F F F

T T T T T T T T T T T F F F

T T T T T T T T T T T T T T F F F

T T T T T T T T T T T T T T T T T F F F5

4

3

2

1

0 5 10 15 20
Period (t)

Ite
ra

tio
n

(f
ol

d)

Figure 18: Visualization of time series cross-validation example

Using the example in Figure 18, the first iteration trains on the first 5 observations (blue) and generates
forecasts on the next 3 observations (green). In the second iteration the model trains on the first 5 + 3 = 8
observations and forecasts on the next 3 observations. This continues until the final iteration, where the
model trains on all but the last 3 observations and then generates forecasts for the final 3 observations. In
this example 5 is the initialization value (the number of training observations in the first iteration), 3 is the
step size (the number of observations that are added to the training set each iteration), and 3 is also the
horizon (the number of periods for which we generate a forecast). Each of the forecasts is then compared
with actual (observed) values to evaluate the forecast.

Our evaluation will use use the last 50 days of data as the test folds, with each test fold having 24 observations.
The first iteration will train on the 7560 observations from 2017-12-01 00:00:00 to 2018-10-11 23:00:00 and
test (forecast) on the 24 observations from 2018-10-12 00:00:00 to 2018-10-12 23:00:00. The second iteration
will train on the 7584 observations from 2017-12-01 00:00:00 to 2018-10-12 23:00:00 and test (forecast) on
the 24 observations from 2018-10-13 00:00:00 to 2018-10-13 23:00:00. This continues until the final iteration
where it trains on the 8736 observations from 2017-12-01 00:00:00 to 2018-11-29 23:00:00 and tests (forecasts)
on the 24 observations from 2018-11-30 00:00:00 to 2018-11-30 23:00:00. This means our total sample size for
calculating the error metrics for each model will be 24 × 50 = 1200. Table 1 depicts the time periods used
and sample sizes for a sample of the folds.

Table 2: Train and test set (fold) details for the time series cross-validation process used to calculate estimated
test error (MAE and RMSE).

fold Train Start Train End Train n Test Start Test End Test n
1 2017-12-01 00:00 2018-10-11 23:00 7560 2018-10-12 00:00 2018-10-12 23:00 24
2 2017-12-01 00:00 2018-10-12 23:00 7584 2018-10-13 00:00 2018-10-13 23:00 24
3 2017-12-01 00:00 2018-10-13 23:00 7608 2018-10-14 00:00 2018-10-14 23:00 24
...
24 2017-12-01 00:00 2018-11-03 23:00 8112 2018-11-04 00:00 2018-11-04 23:00 24
25 2017-12-01 00:00 2018-11-04 23:00 8136 2018-11-05 00:00 2018-11-05 23:00 24
...
50 2017-12-01 00:00 2018-11-29 23:00 8736 2018-11-30 00:00 2018-11-30 23:00 24

20

Results
A common-sense, non-machine learning baseline serves as a sanity check and is often used to establish a
baseline of comparison for more advanced machine learning models.

In this case, bike demand can be assumed to be season with a daily (24 hours) period. Given hourly data, a
common-sense baseline is to predict the bike demand at time t to be equal to the bike demand at time t − 24,
the same hour the previous day. In the time series paradigm this is known as a Seasonal NAIVE (SNAIVE)
model.

x̂t = xt−24 (25)

Table 3: Test Error by Model Type

Model MAE RMSE
Baseline

Baseline 190 330
Time Series Methods

SARIMAX (1,0,1) (5,1,0) 201 300
fasster 188 286
Prophet 169 242

Tree Methods
Random Forest 165 232
XGBoost 129 172

LSTM Models
LSTM Lag 1 166 277
LSTM Lag 12 78 119
LSTM Lag 24 104 168

190
201

188

169165

129

166

78

104

0

50

100

150

200

LSTM
Lag
12

LSTM
Lag
24

XGBoost Random
Forest

LSTM
Lag
1

Prophet fasster Baseline SARIMAX
(1,0,1)
(5,1,0)

M
A

E

MAE by Model

Figure 19: Mean Absolute Error by Model

Table 3 and Figure 19 report the MAE and RMSE for each model. Perhaps unsurprisingly, the machine

21

learning methods performed better than the time series methods, on average. The LSTM Lag 12 model
performed the best (smallest MAE), with MAE = 78 bikes demanded per hour. This was followed by LSTM
Lag 24 and XGBoost. The baseline SNAIVE model outperformed both ARIMA-based models, which further
reinforces the difficulty that ARIMA methods have with such high-frequency data.

Conclusion
The focus of this analysis has been on the ability to accurately forecast hourly bike demand for the next 24
hours using data from Seoul, South Korea’s bike sharing program. This analysis shows that a LSTM Lag 12
generates the most accurate forecast of demand, as measured by mean absolute error, with MAE = 78 bikes
per hour. Assuming that this error rate is within the operational constraints of the bikeshare management
organization (i.e. they can still make bike allocation decisions even with the given error rate), this model
could be implemented immediately to help ensure an adequate number of bikes are available over the next 24
hours.

As with most machine learning models, future research into this application could foucs on the inclusion of
additional predictor variables and more recent bike usage data. One key deficit of the models presented in
this analysis are that they do not account for spatial variation in demand. That is, what is the geographic
distribution of bike demand at each hour. Understanding not just the total number of bikes demanded but
also where in the city the bikes are needed would allow the administrators of the bikeshare to reallocate
available bikes from areas of low demand to areas of high demand. Adding a geospatial dimension to the
demand would certainly increase the complexity of the prediction because it would require either numerous
individual models (one for each geography) or a single model with a multivariate response that is a vector
of the same length as the number of “locations” within the city where demand is captured. Although this
would be a more complex problem, it would also be of significant more value to the bikeshare administrators,
making it a strong candidate for subsequent research.

22

References
Prashant Banerjee. A guide on xgboost hyperparameters tuning. URL https://www.kaggle.com/code/prasha

nt111/a-guide-on-xgboost-hyperparameters-tuning/notebook.

G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical Society. Series
B (Methodological), 26(2):211–252, 1964. ISSN 00359246. URL http://www.jstor.org/stable/2984418.

Jason Brownlee. How to use standardscaler and minmaxscaler transforms in python, 06 2020. URL
https://machinelearningmastery.com/standardscaler-and-minmaxscaler-transforms-in-python/.

François Chollet et al. keras, 2015.

Sathishkumar V E and Yongyun Cho. A rule-based model for seoul bike sharing demand prediction using
weather data. European Journal of Remote Sensing, 53(sup1):166–183, 2020. doi: 10.1080/22797254.2020.
1725789. URL https://doi.org/10.1080/22797254.2020.1725789.

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hundreds of
classifiers to solve real world classification problems? Journal of Machine Learning Research, 15(90):
3133–3181, 2014. URL http://jmlr.org/papers/v15/delgado14a.html.

Chang Gao and Yong Chen. Using machine learning methods to predict demand for bike sharing. In Jason L.
Stienmetz, Berta Ferrer-Rosell, and David Massimo, editors, Information and Communication Technologies
in Tourism 2022, pages 282–296, Cham, 2022. Springer International Publishing. ISBN 978-3-030-94751-4.

Victor M. Guerrero. Time-series analysis supported by power transformations. Journal of Forecasting, 12(1):
37–48, 1993. doi: https://doi.org/10.1002/for.3980120104. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/for.3980120104.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–1780, 11
1997. doi: 10.1162/neco.1997.9.8.1735.

Rob Hyndman (https://stats.stackexchange.com/users/159/rob hyndman). Training arima model on
data with missing values. Cross Validated. URL https://stats.stackexchange.com/q/267264.
URL:https://stats.stackexchange.com/q/267264 (version: 2017-03-13).

Rob Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice. OTexts, Melbourne, Australia,
3rd edition, 2021. URL OTexts.com/fpp3.

Rob J. Hyndman and Yeasmin Khandakar. Automatic time series forecasting: The forecast package
for r. Journal of Statistical Software, 27(3):1–22, 2008. doi: 10.18637/jss.v027.i03. URL https:
//www.jstatsoft.org/index.php/jss/article/view/v027i03.

Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast accuracy. International Journal
of Forecasting, 22(4):679–688, 2006. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2006.03.001.
URL https://www.sciencedirect.com/science/article/pii/S0169207006000239.

Denis Kwiatkowski, Peter C.B. Phillips, Peter Schmidt, and Yongcheol Shin. Testing the null hypothesis of
stationarity against the alternative of a unit root: How sure are we that economic time series have a unit
root? Journal of Econometrics, 54(1):159–178, 1992. ISSN 0304-4076. doi: https://doi.org/10.1016/0304-
4076(92)90104-Y. URL https://www.sciencedirect.com/science/article/pii/030440769290104Y.

G. M. Ljung and G. E. P. Box. On a measure of lack of fit in time series models. Biometrika, 65(2):297–303,
08 1978. ISSN 0006-3444. doi: 10.1093/biomet/65.2.297. URL https://doi.org/10.1093/biomet/65.2.297.

Mitchell O’Hara-Wild. fable.prophet: Prophet Modelling Interface for ’fable’, 2020a. URL https://fable.tidy
verts.org. R package version 0.1.0.

Mitchell O’Hara-Wild. fable: Forecasting with multiple seasonality, 11 2020b. URL https://slides.mitchello
harawild.com/nhs2020/#1.

23

https://www.kaggle.com/code/prashant111/a-guide-on-xgboost-hyperparameters-tuning/notebook
https://www.kaggle.com/code/prashant111/a-guide-on-xgboost-hyperparameters-tuning/notebook
http://www.jstor.org/stable/2984418
https://machinelearningmastery.com/standardscaler-and-minmaxscaler-transforms-in-python/
https://doi.org/10.1080/22797254.2020.1725789
http://jmlr.org/papers/v15/delgado14a.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/for.3980120104
https://onlinelibrary.wiley.com/doi/abs/10.1002/for.3980120104
https://stats.stackexchange.com/q/267264
OTexts.com/fpp3
https://www.jstatsoft.org/index.php/jss/article/view/v027i03
https://www.jstatsoft.org/index.php/jss/article/view/v027i03
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://www.sciencedirect.com/science/article/pii/030440769290104Y
https://doi.org/10.1093/biomet/65.2.297
https://fable.tidyverts.org
https://fable.tidyverts.org
https://slides.mitchelloharawild.com/nhs2020/#1
https://slides.mitchelloharawild.com/nhs2020/#1

Mitchell O’Hara-Wild and Rob Hyndman. fasster: Fast Additive Switching of Seasonality, Trend and
Exogenous Regressors, 2022. URL https://github.com/mitchelloharawild/fasster. R package version
0.1.0.9100.

Mitchell O’Hara-Wild, Rob Hyndman, and Earo Wang. fable: Forecasting Models for Tidy Time Series, 2021.
URL https://fable.tidyverts.org. R package version 0.3.1.

Philipp Probst, Marvin N. Wright, and Anne-Laure Boulesteix. Hyperparameters and tuning strategies for
random forest. WIREs Data Mining and Knowledge Discovery, 9(3):e1301, 2019. doi: https://doi.org/10.1
002/widm.1301. URL https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1301.

J. Schuijbroek, R.C. Hampshire, and W.-J. van Hoeve. Inventory rebalancing and vehicle routing in
bike sharing systems. European Journal of Operational Research, 257(3):992–1004, 2017. URL https:
//EconPapers.repec.org/RePEc:eee:ejores:v:257:y:2017:i:3:p:992-1004.

R.H. Shumway and D.S. Stoffer. Time Series: A Data Analysis Approach Using R. A Chapman & Hall book.
CRC Press, Taylor & Francis Group, 2019. ISBN 9780367221096.

Sean J. Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45, 2018.
doi: 10.1080/00031305.2017.1380080. URL https://doi.org/10.1080/00031305.2017.1380080.

UCI. Seoul bike sharing demand data set, Mar 2020. URL https://archive.ics.uci.edu/ml/datasets/Seoul+Bi
ke+Sharing+Demand.

24

https://github.com/mitchelloharawild/fasster
https://fable.tidyverts.org
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1301
https://EconPapers.repec.org/RePEc:eee:ejores:v:257:y:2017:i:3:p:992-1004
https://EconPapers.repec.org/RePEc:eee:ejores:v:257:y:2017:i:3:p:992-1004
https://doi.org/10.1080/00031305.2017.1380080
https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand
https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand

	Introduction
	Literature
	Exploratory Analysis
	Bike Count
	Covariates

	Modeling
	Time Series Modeling
	SARIMAX
	Prophet
	fasster

	Machine Learning
	Tree Methods
	Long Short-Term Memory (LSTM) Recurrent Neural Network

	Evaluation
	Error
	Model Selection

	Results
	Conclusion

